论文标题

共同信息正规化离线增强学习

Mutual Information Regularized Offline Reinforcement Learning

论文作者

Ma, Xiao, Kang, Bingyi, Xu, Zhongwen, Lin, Min, Yan, Shuicheng

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The major challenge of offline RL is the distribution shift that appears when out-of-distribution actions are queried, which makes the policy improvement direction biased by extrapolation errors. Most existing methods address this problem by penalizing the policy or value for deviating from the behavior policy during policy improvement or evaluation. In this work, we propose a novel MISA framework to approach offline RL from the perspective of Mutual Information between States and Actions in the dataset by directly constraining the policy improvement direction. MISA constructs lower bounds of mutual information parameterized by the policy and Q-values. We show that optimizing this lower bound is equivalent to maximizing the likelihood of a one-step improved policy on the offline dataset. Hence, we constrain the policy improvement direction to lie in the data manifold. The resulting algorithm simultaneously augments the policy evaluation and improvement by adding mutual information regularizations. MISA is a general framework that unifies conservative Q-learning (CQL) and behavior regularization methods (e.g., TD3+BC) as special cases. We introduce 3 different variants of MISA, and empirically demonstrate that tighter mutual information lower bound gives better offline RL performance. In addition, our extensive experiments show MISA significantly outperforms a wide range of baselines on various tasks of the D4RL benchmark,e.g., achieving 742.9 total points on gym-locomotion tasks. Our code is available at https://github.com/sail-sg/MISA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源