论文标题
部分可观测时空混沌系统的无模型预测
An empirical method for mitigating an excess up-scattering mass bias on the weak lensing mass estimates for shear-selected cluster samples
论文作者
论文摘要
统计偏差是一种统计偏差,在统计意义上,观察到的一组星系群的量子偏差是一种统计偏见,在统计意义上,由于统计意义上的差异要大于较高的质量($ m _ {\ rm rm true} $),因此由于较高的差异,因为在统计意义上是更大的,因为它的可能性较高。镜头簇剪切轮廓。这种非对称散射概率是由单调降低群集质量功能随质量增加而引起的。我们在弱透镜剪切选择的簇中检查了这种偏见(由$ b = m = m _ {\ rm obs}/m _ {\ rm true} $),并提出了一种缓解它的经验方法。这样一来,我们执行了逼真的模拟群集的标准弱透镜质量估计,并发现基于标准$χ^2 $分析的弱透镜质量估计给出了统计上正确的置信区间,但最佳拟合质量的平均含量为偏差。我们的校正方法将标准贝叶斯统计的框架与群集质量的概率分布和浓度参数的先验分布相关。我们使用模拟弱透镜簇测试我们的校正方法,并发现该方法可以很好地与所得更正的$ m _ {\ rm obs} $ - bin平均质量偏见在$ \ sim 10 $百分比之内接近unity。我们将校正方法应用于Hamana等人的弱透镜剪切选择的簇样品。 (2020年),并呈现偏置校正的弱透镜簇质量。
An excess up-scattering mass bias on a weak lensing cluster mass estimate is a statistical bias that an observed weak lensing mass ($M_{\rm obs}$) of a cluster of galaxies is, in a statistical sense, larger than its true mass ($M_{\rm true}$) because of a higher chance of up-scattering than that of down-scattering due to random noises in a weak lensing cluster shear profile. This non-symmetric scattering probability is caused by a monotonically decreasing cluster mass function with increasing mass. We examine this bias (defined by $b=M_{\rm obs}/M_{\rm true}$) in weak lensing shear-selected clusters, and present an empirical method for mitigating it. In so doing, we perform the standard weak lensing mass estimate of realistic mock clusters, and find that the weak lensing mass estimate based on the standard $χ^2$ analysis gives a statistically correct confidence intervals, but resulting best-fitting masses are biased high on average. Our correction method uses the framework of the standard Bayesian statistics with the prior of the probability distribution of the cluster mass and concentration parameter from recent empirical models. We test our correction method using mock weak lensing clusters, and find that the method works well with resulting corrected $M_{\rm obs}$-bin averaged mass biases being close to unity within $\sim 10$ percent. We applied the correction method to weak lensing shear-selected cluster sample of Hamana et al. (2020), and present bias-corrected weak lensing cluster masses.