论文标题

高斯随机矩阵的渐近无独立性和进入排列。第二部分:无限的弗雷尼斯

Asymptotic free independence and entry permutations for Gaussian random matrices. Part II: Infinitesimal freeness

论文作者

Popa, M., Szpojankowski, K., Tseng, P. -L.

论文摘要

我们研究了带有置换条目的高斯单位合奏的渐近无限分布。我们表明,对于随机均匀排列,渐近排列的Gue矩阵具有无穷小分布。此外,我们表明,同一GUE基质的渐近置换次数是无限的。除此之外,我们研究了进入排列的特定示例 - 转置,我们表明,尽管Gue矩阵渐近地脱离了其转置,但它并非无限地没有它。

We study asymptotic infinitesimal distributions of Gaussian Unitary Ensembles with permuted entries. We show that for random uniform permutations, the asymptotically permuted GUE matrix has a null infinitesimal distribution. Moreover, we show that asymptotically different permutations of the same GUE matrix are infinitesimally free. Besides this we study particular example of entry permutation - the transpose, and we show that while a GUE matrix is asymptotically free from its transpose it is not infinitesimally free from it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源