论文标题

在具有较低曲率边界的公制测量空间的固有和外在边界上

On the intrinsic and extrinsic boundary for metric measure spaces with lower curvature bounds

论文作者

Kapovitch, Vitali, Zhu, Xingyu

论文摘要

我们表明,如果Alexandrov space $ x $具有与$ x $边界相同的尺寸分离的Alexandrov子空间$ \ bar的barω$,则$ \ barω$的拓扑边界与其Alexandrov Boundare的拓扑边界相吻合。同样,如果未汇合的RCD(k,n)空间$ x $具有非策略的RCD(k,n)子空间$ \ barω$与$ x $的边界的分离,并且具有轻度的边界条件,则具有$ \ barω$ $ conciides的拓扑边界与菲利普斯·菲利普斯·基吉利(Deippis-Gigli)边界。然后,我们讨论有关这种等价类型的凸性的一些后果。

We show that if an Alexandrov space $X$ has an Alexandrov subspace $\bar Ω$ of the same dimension disjoint from the boundary of $X$, then the topological boundary of $\bar Ω$ coincides with its Alexandrov boundary. Similarly, if a noncollapsed RCD(K,N) space $X$ has a noncollapsed RCD(K,N) subspace $\bar Ω$ disjoint from boundary of $X$ and with mild boundary condition, then the topological boundary of $\bar Ω$ coincides with its De Philippis-Gigli boundary. We then discuss some consequences about convexity of such type of equivalence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源