论文标题

通过Hausdorff分解支持分解相关因素

Disentanglement of Correlated Factors via Hausdorff Factorized Support

论文作者

Roth, Karsten, Ibrahim, Mark, Akata, Zeynep, Vincent, Pascal, Bouchacourt, Diane

论文摘要

深度学习研究的一个宏伟目标是学习能够跨分配转变概括的表示。解开是一个有前途的方向,旨在使模型的表示与生成数据的基本因素(例如颜色或背景)。但是,现有的分解方法依赖一个通常不切实际的假设:该因素在统计上是独立的。实际上,因素(例如对象颜色和形状)是相关的。为了解决这一限制,我们考虑使用放松的分离标准(Hausdorff分解支持(HFS)标准),该标准仅鼓励成对分解的\ emph {support {support},而不是阶乘分布,而不是通过最大程度地减少Hausdorff距离。这允许在其支持上进行任意分配因素,包括它们之间的相关性。我们表明,HFS的使用始终促进分解和在各种相关环境和基准中的基础因素的恢复,即使在严重的培训相关性和相关性转移下,零件超过$+60 \%$ $+60 \%$的相对改进的相对改善,而不是现有的分离方法。此外,我们发现利用HFS来表示学习甚至可以促进转移到下游任务,例如分配转移的分类。我们希望我们的原始方法和积极的经验结果激发了在稳定概括的开放问题上的进一步进步。代码可在https://github.com/facebookresearch/disentangling-cortherated-factors中找到。

A grand goal in deep learning research is to learn representations capable of generalizing across distribution shifts. Disentanglement is one promising direction aimed at aligning a model's representation with the underlying factors generating the data (e.g. color or background). Existing disentanglement methods, however, rely on an often unrealistic assumption: that factors are statistically independent. In reality, factors (like object color and shape) are correlated. To address this limitation, we consider the use of a relaxed disentanglement criterion -- the Hausdorff Factorized Support (HFS) criterion -- that encourages only pairwise factorized \emph{support}, rather than a factorial distribution, by minimizing a Hausdorff distance. This allows for arbitrary distributions of the factors over their support, including correlations between them. We show that the use of HFS consistently facilitates disentanglement and recovery of ground-truth factors across a variety of correlation settings and benchmarks, even under severe training correlations and correlation shifts, with in parts over $+60\%$ in relative improvement over existing disentanglement methods. In addition, we find that leveraging HFS for representation learning can even facilitate transfer to downstream tasks such as classification under distribution shifts. We hope our original approach and positive empirical results inspire further progress on the open problem of robust generalization. Code available at https://github.com/facebookresearch/disentangling-correlated-factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源