论文标题
对称腿部机器人的样品有效的动力学学习:利用物理和几何对称性
Sample Efficient Dynamics Learning for Symmetrical Legged Robots:Leveraging Physics Invariance and Geometric Symmetries
论文作者
论文摘要
基础动力学的模型概括对于在学习机器人控制时实现数据效率至关重要。本文提出了一种利用基础机器人系统中对称性的学习动力学的新方法,该方法可以从更少的样品中推断出强大的外推。代表向量空间中所有数据的现有框架无法考虑机器人的结构化信息,例如腿对称性,旋转对称性和物理不变性。结果,这些方案需要大量的培训数据来学习系统的冗余元素,因为它们是独立学习的。取而代之的是,我们建议通过在对称对象组中代表系统并设计神经网络体系结构以评估对象之间的不变性和均衡性来考虑几何事先。最后,我们通过将概括与所提出的模型和现有模型的看不见数据进行比较来证明我们的方法的有效性。我们还基于学习的逆动力学模型实现了攀岩机器人的控制器。结果表明,我们的方法生成了准确的控制输入,这些输入有助于机器人达到所需的状态,同时需要比现有方法更少的培训数据。
Model generalization of the underlying dynamics is critical for achieving data efficiency when learning for robot control. This paper proposes a novel approach for learning dynamics leveraging the symmetry in the underlying robotic system, which allows for robust extrapolation from fewer samples. Existing frameworks that represent all data in vector space fail to consider the structured information of the robot, such as leg symmetry, rotational symmetry, and physics invariance. As a result, these schemes require vast amounts of training data to learn the system's redundant elements because they are learned independently. Instead, we propose considering the geometric prior by representing the system in symmetrical object groups and designing neural network architecture to assess invariance and equivariance between the objects. Finally, we demonstrate the effectiveness of our approach by comparing the generalization to unseen data of the proposed model and the existing models. We also implement a controller of a climbing robot based on learned inverse dynamics models. The results show that our method generates accurate control inputs that help the robot reach the desired state while requiring less training data than existing methods.