论文标题
生成对抗网络(GAN)在超快电子衍射(UED)图像分析中的新应用
Novel applications of Generative Adversarial Networks (GANs) in the analysis of ultrafast electron diffraction (UED) images
论文作者
论文摘要
从衍射数据中推断瞬态分子结构动力学是一个模棱两可的任务,通常需要不同的近似方法。在本文中,我们提出了使用机器学习解决此问题的尝试。尽管机器学习在分析衍射图像的最新应用中仅应用一个单个神经网络对实验数据集并训练它,但我们的方法利用了对合成数据和实验数据进行培训的附加发电机网络。我们的网络将实验数据转换为理想化的衍射模式,通过该模式,通过仅根据合成数据训练的卷积神经网络(CNN)从中提取信息。我们在通过800 nm激光脉冲激发后进行热化的二雄样品的超快电子衍射(UED)数据验证了这种方法。该网络能够预测与分析估计值相差不到6%的瞬时温度。值得注意的是,仅在408张图像的数据集中实现了这种性能。我们认为,在收集大量视觉数据(例如光束线)的实验环境中采用该网络可以提供对不同样品的结构动力学的见解。
Inferring transient molecular structural dynamics from diffraction data is an ambiguous task that often requires different approximation methods. In this paper we present an attempt to tackle this problem using machine learning. While most recent applications of machine learning for the analysis of diffraction images apply only a single neural network to an experimental dataset and train it on the task of prediction, our approach utilizes an additional generator network trained on both synthetic data and experimental data. Our network converts experimental data into idealized diffraction patterns from which information is extracted via a convolutional neural network (CNN) trained on synthetic data only. We validate this approach on ultrafast electron diffraction (UED) data of bismuth samples undergoing thermalization upon excitation via 800 nm laser pulses. The network was able to predict transient temperatures with a deviation of less than 6% from analytically estimated values. Notably, this performance was achieved on a dataset of 408 images only. We believe employing this network in experimental settings where high volumes of visual data are collected, such as beam lines, could provide insights into the structural dynamics of different samples.