论文标题
麦当劳加速恒星调查(MASS):古代五个星际主机系统Kepler-444的建筑
The McDonald Accelerating Stars Survey (MASS): Architecture of the Ancient Five-Planet Host System Kepler-444
论文作者
论文摘要
我们介绍了古代($ \ 11 $ GYR)KEPLER-444系统的最新,最精确的特征,该系统由K0主恒星(Kepler-444 A)组成,该系统(Kepler-444 A)托管五个过渡行星,以及一个紧密的M型光谱二进制(Kepler-444 bc),由A-BC pojpents pojpents pojpents pojpents pojpents pojpents pojpents au au au au au。我们已经使用来自Hobby Eberly望远镜的Keck/Nirc2和Kepler-444 A的径向速度的自适应光学成像测量了系统的相对天体,并重新分析了BC和A之间的相对径向速度。我们还将Hipparcos-GAIA天文加速度以及所有已发表的天文统计和径向速度包括在BC的BARYCENTER的更新轨道分析中。与以前的工作相比,这些数据大大扩展了监视的时间基线,并导致了BC的Barycentric轨道的重大更新,包括更大的半毛轴轴($ a = 52.2^{+3.3} _ { - 2.7} $ AU) = 85.4^{+0.3} _ { - 0.4} $度)。我们还得出了B和C分量的第一个动力学质量。我们的结果表明,Kepler-444〜A的原动性磁盘可能被BC截断为$ \ 8 $ au的半径,这可以解决以前注意到的Kepler-444 A的磁盘和行星质量之间的张力。 Kepler-444 BC的Barycentric轨道可能与A五个行星的Barcentric轨道一致,这可能是原始的或动态进化的结果。 Kepler-444系统表明,以分层恒星三元组形成的紧凑型多型系统可以在宇宙的早期时期形成,并在整个宇宙时间内生存。
We present the latest and most precise characterization of the architecture for the ancient ($\approx 11$ Gyr) Kepler-444 system, which is composed of a K0 primary star (Kepler-444 A) hosting five transiting planets, and a tight M-type spectroscopic binary (Kepler-444 BC) with an A-BC projected separation of 66 au. We have measured the system's relative astrometry using the adaptive optics imaging from Keck/NIRC2 and Kepler-444 A's radial velocities from the Hobby Eberly Telescope, and re-analyzed relative radial velocities between BC and A from Keck/HIRES. We also include the Hipparcos-Gaia astrometric acceleration and all published astrometry and radial velocities into an updated orbit analysis of BC's barycenter. These data greatly extend the time baseline of the monitoring and lead to significant updates to BC's barycentric orbit compared to previous work, including a larger semi-major axis ($a = 52.2^{+3.3}_{-2.7}$ au), a smaller eccentricity ($e = 0.55 \pm 0.05$), and a more precise inclination ($i =85.4^{+0.3}_{-0.4}$ degrees). We have also derived the first dynamical masses of B and C components. Our results suggest Kepler-444~A's protoplanetary disk was likely truncated by BC to a radius of $\approx 8$ au, which resolves the previously noticed tension between Kepler-444 A's disk mass and planet masses. Kepler-444 BC's barycentric orbit is likely aligned with those of A's five planets, which might be primordial or a consequence of dynamical evolution. The Kepler-444 system demonstrates that compact multi-planet systems residing in hierarchical stellar triples can form at early epochs of the Universe and survive their secular evolution throughout cosmic time.