论文标题

语言模型解码为可能性 - 效用对齐

Language Model Decoding as Likelihood-Utility Alignment

论文作者

Josifoski, Martin, Peyrard, Maxime, Rajic, Frano, Wei, Jiheng, Paul, Debjit, Hartmann, Valentin, Patra, Barun, Chaudhary, Vishrav, Kıcıman, Emre, Faltings, Boi, West, Robert

论文摘要

成功的语言生成管道的关键组成部分是解码算法。但是,应该指导选择解码算法的一般原则尚不清楚。以前的作品仅比较狭窄方案中的解码算法,并且它们的发现并不能跨任务概括。我们认为,模型的可能性与特定于任务的效用概念之间的错位是理解解码算法有效性的关键因素。为了构建讨论,我们介绍了缓解措施的分类法(MMS),提供了将解码作为一致性工具的统一观点。 MMS分类小组基于其对可能性的隐性假设来解码算法 - 纯度差异,从而产生有关其在任务中适用性的一般性陈述。具体而言,通过分析在各种任务中的可能性和预测效用之间的相关性,我们提供了支持拟议的分类法和一组原理以在选择解码算法时结构推理的经验证据。至关重要的是,我们的分析是第一个将基于可能性的解码算法与依赖外部信息的算法相关联的分析,例如价值引导的方法和提示,并涵盖了迄今为止最多样化的任务集。代码,数据和模型可在https://github.com/epfl-dlab/understanding-decoding上找到。

A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of a decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios, and their findings do not generalize across tasks. We argue that the misalignment between the model's likelihood and the task-specific notion of utility is the key factor to understanding the effectiveness of decoding algorithms. To structure the discussion, we introduce a taxonomy of misalignment mitigation strategies (MMSs), providing a unifying view of decoding as a tool for alignment. The MMS taxonomy groups decoding algorithms based on their implicit assumptions about likelihood--utility misalignment, yielding general statements about their applicability across tasks. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide empirical evidence supporting the proposed taxonomy and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first to relate likelihood-based decoding algorithms with algorithms that rely on external information, such as value-guided methods and prompting, and covers the most diverse set of tasks to date. Code, data, and models are available at https://github.com/epfl-dlab/understanding-decoding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源