论文标题
小分子发现中计算机辅助多目标优化
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
论文作者
论文摘要
分子发现是一个多目标优化问题,需要识别平衡多种(通常竞争)特性的分子或一组分子。多目标分子设计通常是通过使用标量将感兴趣的属性组合到单个目标函数中来解决的,这对相对重要性施加了假设,并且几乎没有发现目标之间的权衡。与标量相反,帕累托优化不需要相对重要性的知识,并揭示了目标之间的权衡。但是,它在算法设计中介绍了其他注意事项。在这篇综述中,我们描述了基于池的和从头生成的方法,用于多目标分子发现,重点是帕累托优化算法。我们展示了基于池的分子发现是多目标贝叶斯优化的相对直接扩展,以及使用奖励功能(强化学习)中的非主导分类以相似的方式以相似方式以相似的方式延伸到多目标优化(加强学习)或选择用于重新培训(分配学习)或Gentic Algorith(GengorithM)。最后,我们讨论了该领域的剩余挑战和机遇,强调了将贝叶斯优化技术采用从头设计的机会。
Molecular discovery is a multi-objective optimization problem that requires identifying a molecule or set of molecules that balance multiple, often competing, properties. Multi-objective molecular design is commonly addressed by combining properties of interest into a single objective function using scalarization, which imposes assumptions about relative importance and uncovers little about the trade-offs between objectives. In contrast to scalarization, Pareto optimization does not require knowledge of relative importance and reveals the trade-offs between objectives. However, it introduces additional considerations in algorithm design. In this review, we describe pool-based and de novo generative approaches to multi-objective molecular discovery with a focus on Pareto optimization algorithms. We show how pool-based molecular discovery is a relatively direct extension of multi-objective Bayesian optimization and how the plethora of different generative models extend from single-objective to multi-objective optimization in similar ways using non-dominated sorting in the reward function (reinforcement learning) or to select molecules for retraining (distribution learning) or propagation (genetic algorithms). Finally, we discuss some remaining challenges and opportunities in the field, emphasizing the opportunity to adopt Bayesian optimization techniques into multi-objective de novo design.