论文标题

通过凸面编程用共享的列空间来绘制低级矩阵

Sketching low-rank matrices with a shared column space by convex programming

论文作者

Srinivasa, Rakshith S, Kim, Seonho, Lee, Kiryung

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In many practical applications including remote sensing, multi-task learning, and multi-spectrum imaging, data are described as a set of matrices sharing a common column space. We consider the joint estimation of such matrices from their noisy linear measurements. We study a convex estimator regularized by a pair of matrix norms. The measurement model corresponds to block-wise sensing and the reconstruction is possible only when the total energy is well distributed over blocks. The first norm, which is the maximum-block-Frobenius norm, favors such a solution. This condition is analogous to the notion of low-spikiness in matrix completion or column-wise sensing. The second norm, which is a tensor norm on a pair of suitable Banach spaces, induces low-rankness in the solution together with the first norm. We demonstrate that the joint estimation provides a significant gain over the individual recovery of each matrix when the number of matrices sharing a column space and the ambient dimension of the shared column space are large relative to the number of columns in each matrix. The convex estimator is cast as a semidefinite program and an efficient ADMM algorithm is derived. The empirical behavior of the convex estimator is illustrated using Monte Carlo simulations and recovery performance is compared to existing methods in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源