论文标题

胸部X射线分类中对象级注释的概率整合

Probabilistic Integration of Object Level Annotations in Chest X-ray Classification

论文作者

van Sonsbeek, Tom, Zhen, Xiantong, Mahapatra, Dwarikanath, Worring, Marcel

论文摘要

医疗图像数据集及其注释的增长不如它们在一般领域中的等效速度那么快。这使得从最新的,更多的数据密集型方法中进行了翻译,这些方法对视觉领域产生了巨大影响,越来越困难和效率较低。在本文中,我们提出了一个新的概率潜在可变模型,以用于胸部X射线图像中的疾病分类。具体而言,我们考虑包含全球疾病标签的胸部X射线数据集,并且对于较小的子集包含对象级别的专家注释,以眼睛凝视模式和疾病边界盒的形式进行注释。我们提出了一种两阶段优化算法,该算法能够以两阶段的方式通过单个训练管道来处理这些不同的标签粒度。在我们的管道中,全局数据集特征是在模型的较低层中学习的。使用有条件变异推理启发的知识蒸馏方法,在模型的最终层中学习了细颗粒专家对象级注释中的具体细节和细微差别。随后,模型权重被冷冻以指导这一学习过程,并防止对较小注释的数据子集的过度适合。所提出的方法可在公共基准数据集胸部X-Ray14和Mimic-CXR上对不同骨架的分类进行一致的分类改进。这表明了从粗糙到细粒度的两阶段学习如何使用对象级别的注释,是一种有效的方法,是一种有效的方法。

Medical image datasets and their annotations are not growing as fast as their equivalents in the general domain. This makes translation from the newest, more data-intensive methods that have made a large impact on the vision field increasingly more difficult and less efficient. In this paper, we propose a new probabilistic latent variable model for disease classification in chest X-ray images. Specifically we consider chest X-ray datasets that contain global disease labels, and for a smaller subset contain object level expert annotations in the form of eye gaze patterns and disease bounding boxes. We propose a two-stage optimization algorithm which is able to handle these different label granularities through a single training pipeline in a two-stage manner. In our pipeline global dataset features are learned in the lower level layers of the model. The specific details and nuances in the fine-grained expert object-level annotations are learned in the final layers of the model using a knowledge distillation method inspired by conditional variational inference. Subsequently, model weights are frozen to guide this learning process and prevent overfitting on the smaller richly annotated data subsets. The proposed method yields consistent classification improvement across different backbones on the common benchmark datasets Chest X-ray14 and MIMIC-CXR. This shows how two-stage learning of labels from coarse to fine-grained, in particular with object level annotations, is an effective method for more optimal annotation usage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源