论文标题

狮子:3D形成生成的潜在点扩散模型

LION: Latent Point Diffusion Models for 3D Shape Generation

论文作者

Zeng, Xiaohui, Vahdat, Arash, Williams, Francis, Gojcic, Zan, Litany, Or, Fidler, Sanja, Kreis, Karsten

论文摘要

在3D点云合成中,脱氧扩散模型(DDMS)显示出有希望的结果。为了推进3D DDM并使其对数字艺术家有用,我们需要(i)高发质量,(ii)操纵和应用的灵活性,例如有条件的合成和形状插值,以及(iii)输出光滑表面或网格的能力。为此,我们介绍了3D形成生成的分层潜在扩散模型(狮子)。狮子被设置为具有分层潜在空间的变分自动编码器(VAE),将全局形状的潜在表示与点结构的潜在空间结合在一起。对于一代人来说,我们在这些潜在空间中训练两个分层DDM。与直接在点云上运行的DDM相比,层次VAE方法可以提高性能,而点结构的潜伏期仍然适合基于DDM的建模。在实验上,狮子在多个造型基准测试基准上实现了最先进的生成性能。此外,我们的VAE框架使我们能够轻松地将狮子用于不同的相关任务:狮子在多模式形状Denoising和Voxel条件的合成方面表现出色,并且可以适用于文本和图像驱动的3D生成。我们还展示了形状自动编码和潜在形状插值,并使用现代的表面重建技术增强狮子,以生成光滑的3D网格。我们希望狮子为使用3D形状的艺术家提供强大的工具,因为其高质量的生成,灵活性和表面重建。项目页面和代码:https://nv-tlabs.github.io/lion。

Denoising diffusion models (DDMs) have shown promising results in 3D point cloud synthesis. To advance 3D DDMs and make them useful for digital artists, we require (i) high generation quality, (ii) flexibility for manipulation and applications such as conditional synthesis and shape interpolation, and (iii) the ability to output smooth surfaces or meshes. To this end, we introduce the hierarchical Latent Point Diffusion Model (LION) for 3D shape generation. LION is set up as a variational autoencoder (VAE) with a hierarchical latent space that combines a global shape latent representation with a point-structured latent space. For generation, we train two hierarchical DDMs in these latent spaces. The hierarchical VAE approach boosts performance compared to DDMs that operate on point clouds directly, while the point-structured latents are still ideally suited for DDM-based modeling. Experimentally, LION achieves state-of-the-art generation performance on multiple ShapeNet benchmarks. Furthermore, our VAE framework allows us to easily use LION for different relevant tasks: LION excels at multimodal shape denoising and voxel-conditioned synthesis, and it can be adapted for text- and image-driven 3D generation. We also demonstrate shape autoencoding and latent shape interpolation, and we augment LION with modern surface reconstruction techniques to generate smooth 3D meshes. We hope that LION provides a powerful tool for artists working with 3D shapes due to its high-quality generation, flexibility, and surface reconstruction. Project page and code: https://nv-tlabs.github.io/LION.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源