论文标题

Sagemix:点云的显着指导的混合

SageMix: Saliency-Guided Mixup for Point Clouds

论文作者

Lee, Sanghyeok, Jeon, Minkyu, Kim, Injae, Xiong, Yunyang, Kim, Hyunwoo J.

论文摘要

数据增强是提高深度学习模型的概括能力的关键。 Mixup是一种简单且广泛使用的数据增强技术,已证明可以有效减轻过度拟合和数据稀缺性问题。同样,对图像域中显着性混合的最新研究表明,保留区分零件对改善概括性能有益。但是,这些基于混合的数据增强在3D视觉中没有反应,尤其是在点云中。在本文中,我们提出了Sagemix,这是一种用于点云的显着性混合,以保留显着的局部结构。具体而言,我们从两个点云中提取明显区域,然后将它们平滑地组合成一个连续的形状。通过通过重新加权显着分数进行简单的顺序采样,Sagemix保留了显着区域的局部结构。广泛的实验表明,所提出的方法始终优于各种基准点云数据集中的现有混合方法。使用PointNet ++,我们的方法的准确度获得了3D仓库数据集(MN40)和ScanObjectnn的标准培训的准确性增长2.6%和4.0%。除了概括性能外,Sagemix还提高了鲁棒性和不确定性校准。此外,当采用我​​们的方法来完成各种任务(包括部分细分和标准2D图像分类)时,我们的方法可以实现竞争性能。

Data augmentation is key to improving the generalization ability of deep learning models. Mixup is a simple and widely-used data augmentation technique that has proven effective in alleviating the problems of overfitting and data scarcity. Also, recent studies of saliency-aware Mixup in the image domain show that preserving discriminative parts is beneficial to improving the generalization performance. However, these Mixup-based data augmentations are underexplored in 3D vision, especially in point clouds. In this paper, we propose SageMix, a saliency-guided Mixup for point clouds to preserve salient local structures. Specifically, we extract salient regions from two point clouds and smoothly combine them into one continuous shape. With a simple sequential sampling by re-weighted saliency scores, SageMix preserves the local structure of salient regions. Extensive experiments demonstrate that the proposed method consistently outperforms existing Mixup methods in various benchmark point cloud datasets. With PointNet++, our method achieves an accuracy gain of 2.6% and 4.0% over standard training in 3D Warehouse dataset (MN40) and ScanObjectNN, respectively. In addition to generalization performance, SageMix improves robustness and uncertainty calibration. Moreover, when adopting our method to various tasks including part segmentation and standard 2D image classification, our method achieves competitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源