论文标题
用于耦合的Navier-Stokes和Darcy问题的可杂交的不连续的Galerkin方法
A hybridizable discontinuous Galerkin method for the coupled Navier-Stokes and Darcy problem
论文作者
论文摘要
我们介绍并分析了一个强烈保守的混合杂交不连续的Galerkin有限元方法,用于耦合不可压缩的Navier-Stokes和Beaver-Joseph-Joseph-Saffman界面条件的Darcy问题。先验误差分析表明,速度误差不取决于压力,并且速度和压力以最佳速率收敛。这些结果通过数值示例证实。
We present and analyze a strongly conservative hybridizable discontinuous Galerkin finite element method for the coupled incompressible Navier-Stokes and Darcy problem with Beavers-Joseph-Saffman interface condition. An a priori error analysis shows that the velocity error does not depend on the pressure, and that velocity and pressure converge with optimal rates. These results are confirmed by numerical examples.