论文标题
通过任务驱动功能选择的多通道成像的实验设计
Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection
论文作者
论文摘要
本文介绍了用于实验设计的数据驱动,特定于任务的范式,以缩短获取时间,降低成本并加速成像设备的部署。实验设计中的当前方法集中在模型参数估计上,需要对特定模型的规范,而在成像中,其他任务可能会推动设计。此外,这种方法通常会导致现实成像应用中棘手的优化问题。在这里,我们提出了一个用于实验设计的新范式,该范式同时优化了设计(图像通道集),并训练机器学习模型以执行用户指定的图像分析任务。该方法获得了少量采集的测量空间(许多图像通道)的密集采样的数据,然后确定最能支持任务的预定大小的通道子集。我们提出了一种方法:用于成像中任务驱动的实验设计的方法,以确定最有用的渠道 - 启用集,同时训练网络以执行给定子集的任务。实验证明了在各种成像应用中的潜力:磁共振成像中的几项临床上的任务;以及高光谱成像的遥感和生理应用。结果表明,对经典实验设计,新范式中的两种最新应用方法以及监督功能选择中的最新方法的实质性改善。我们预计我们的方法会进一步应用。可用代码:https://github.com/sbb-gh/experiment-design-multichannel
This paper presents a data-driven, task-specific paradigm for experimental design, to shorten acquisition time, reduce costs, and accelerate the deployment of imaging devices. Current approaches in experimental design focus on model-parameter estimation and require specification of a particular model, whereas in imaging, other tasks may drive the design. Furthermore, such approaches often lead to intractable optimization problems in real-world imaging applications. Here we present a new paradigm for experimental design that simultaneously optimizes the design (set of image channels) and trains a machine-learning model to execute a user-specified image-analysis task. The approach obtains data densely-sampled over the measurement space (many image channels) for a small number of acquisitions, then identifies a subset of channels of prespecified size that best supports the task. We propose a method: TADRED for TAsk-DRiven Experimental Design in imaging, to identify the most informative channel-subset whilst simultaneously training a network to execute the task given the subset. Experiments demonstrate the potential of TADRED in diverse imaging applications: several clinically-relevant tasks in magnetic resonance imaging; and remote sensing and physiological applications of hyperspectral imaging. Results show substantial improvement over classical experimental design, two recent application-specific methods within the new paradigm, and state-of-the-art approaches in supervised feature selection. We anticipate further applications of our approach. Code is available: https://github.com/sbb-gh/experimental-design-multichannel