论文标题
SNN-SC:协作情报的尖峰语义传播框架
SNN-SC: A Spiking Semantic Communication Framework for Collaborative Intelligence
论文作者
论文摘要
协作情报(CI)已成为在资源受限的边缘设备上部署人工智能(AI)模型的有前途的框架。在CI中,AI模型在边缘设备和云之间分配,中间特征从边缘子模型传输到云子模型以完成推理任务。但是,在保持任务性能的同时减少功能传输开销仍然是一个挑战,尤其是在嘈杂的无线通道的情况下。在本文中,我们提出了一个基于尖峰的神经网络(SNN)的语义通信(SC)模型,SNN-SC,该模型从功能中提取紧凑的语义信息,并通过数字二进制渠道传输它。与基于深神经网络(DNN)的SC模型(其输出为浮点)相比,SNN的二进制输出使SNN-SC直接适用于数字二进制通道,而无需额外的量化。此外,我们引入了一种名为IHF的新型尖峰神经元,以增强SNN-SC解码器的重建能力。最后,我们通过最大化语义信息的熵来增强SNN-SC的性能。与传统的独立源和通道编码方法相比,SNN-SC达到了更高的压缩比,并克服了“悬崖效应”。此外,SNN-SC的计算复杂性低于基于DNN的SC模型,并在较差的通道条件下保持更高的任务性能。
Collaborative Intelligence (CI) has emerged as a promising framework for deploying Artificial Intelligence (AI) models on resource-constrained edge devices. In CI, the AI model is partitioned between the edge device and the cloud, with intermediate features transmitted from the edge sub-model to the cloud sub-model to complete the inference task. However, reducing feature transmission overhead while maintaining task performance remains a challenge, particularly in the case of noisy wireless channels. In this paper, we propose a Spiking Neural Network (SNN)-based Semantic Communication (SC) model, SNN-SC, which extracts compact semantic information from features and transmits it through digital binary channels. Compared to the Deep Neural Network (DNN)-based SC model, whose output is floating-point, the binary output of SNN makes SNN-SC directly applicable to digital binary channels without the need for extra quantization. Moreover, we introduce a novel spiking neuron called IHF to enhance the reconstruction capability of the SNN-SC decoder. Finally, we enhance the performance of SNN-SC by maximizing the entropy of semantic information. SNN-SC achieves a higher compression ratio and overcomes the `cliff effect' compared to the traditional separate source and channel coding method. In addition, SNN-SC has lower computational complexity than the DNN-based SC model and maintains higher task performance under poor channel conditions.