论文标题

步态识别的一般阶层损失

Generalized Inter-class Loss for Gait Recognition

论文作者

Yu, Weichen, Yu, Hongyuan, Huang, Yan, Wang, Liang

论文摘要

步态识别是一种独特的生物识别技术,可以在长距离不合作地执行,并在公共安全和智能交通系统中具有广泛的应用。先前的步态工作更多地集中在最小化阶层内差异的同时,同时忽略了限制阶层间差异的重要性。为此,我们提出了一个广义的阶层损失,该损失可以从样本级特征分布和类级特征分布中解析阶层间差异。提议的损失不是对成对得分的相等损失强度,而是通过动态调节成对的重量来优化样本级别的类间特征分布。此外,在类级分布中,广义级别损失增加了阶层间特征分布的均匀性的限制,这迫使特征表示近似于超级球并保持最大的阶层差异。此外,提出的方法会自动调整类之间的边缘,从而使类间特征分布更加灵活。提出的方法可以推广到不同的步态识别网络,并取得重大改进。我们对CASIA-B和OUMVLP进行了一系列实验,实验结果表明,拟议的损失可以显着提高性能并实现最新的性能。

Gait recognition is a unique biometric technique that can be performed at a long distance non-cooperatively and has broad applications in public safety and intelligent traffic systems. Previous gait works focus more on minimizing the intra-class variance while ignoring the significance in constraining inter-class variance. To this end, we propose a generalized inter-class loss which resolves the inter-class variance from both sample-level feature distribution and class-level feature distribution. Instead of equal penalty strength on pair scores, the proposed loss optimizes sample-level inter-class feature distribution by dynamically adjusting the pairwise weight. Further, in class-level distribution, generalized inter-class loss adds a constraint on the uniformity of inter-class feature distribution, which forces the feature representations to approximate a hypersphere and keep maximal inter-class variance. In addition, the proposed method automatically adjusts the margin between classes which enables the inter-class feature distribution to be more flexible. The proposed method can be generalized to different gait recognition networks and achieves significant improvements. We conduct a series of experiments on CASIA-B and OUMVLP, and the experimental results show that the proposed loss can significantly improve the performance and achieves the state-of-the-art performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源