论文标题
离散类固醇的超对称标准
A criterion for hypersymmetry on discrete groupoids
论文作者
论文摘要
在离散的Groupoid $ξ$上,给定了一个倒束$ \ Mathscr C \ Overset {q} {Q} {\ to}ξ$,我们研究了相关的Hahn代数$ \ elgebra $ \ ell^{\ ell^{\ elfty,1}(ξ\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!我们证明$ξ$是对称的(分别是超级对称),并且仅当所有各向同性亚组都是对称的(分别为型超级对称)。我们还使用具有恒定纤维的秋季束表征超对称性,表明对于离散的类固醇,“超对称”等于“刚性对称性”。
Given a Fell bundle $\mathscr C\overset{q}{\to}Ξ$ over the discrete groupoid $Ξ$, we study the symmetry of the associated Hahn algebra $\ell^{\infty,1}(Ξ\!\mid\!\mathscr C)$ in terms of the isotropy subgroups of $Ξ$. We prove that $Ξ$ is symmetric (resp. hypersymmetric) if and only if all of the isotropy subgroups are symmetric (resp. hypersymmetric). We also characterize hypersymmetry using Fell bundles with constant fibers, showing that for discrete groupoids, 'hypersymmetry' equals 'rigid symmetry'.