论文标题

解释具有解开树表示的神经政策

Interpreting Neural Policies with Disentangled Tree Representations

论文作者

Wang, Tsun-Hsuan, Xiao, Wei, Seyde, Tim, Hasani, Ramin, Rus, Daniela

论文摘要

机器人的进步,尤其是在复杂的以人为中心的环境中起作用的机器人,依赖于由机器学习驱动的控制解决方案。了解基于学习的控制者如何做出决策是至关重要的,因为机器人通常是至关重要的系统。这敦促对机器人学习的解释性中的解释性因素进行正式和定量的理解。在本文中,我们旨在通过分离的代表镜来研究紧凑型神经政策的可解释性。我们利用决策树来获取变异因素[1]用于机器人学习中的分解;这些囊括了解决任务的技能,行为或策略。为了评估网络如何揭示潜在的任务动态,我们引入了可解释性指标,这些指标衡量了从决策,相互信息和模块化观点的集中度过学习神经动态的分离。在广泛的实验分析中,我们始终如一地展示了可解释性和脱离之间的联系的有效性。

The advancement of robots, particularly those functioning in complex human-centric environments, relies on control solutions that are driven by machine learning. Understanding how learning-based controllers make decisions is crucial since robots are often safety-critical systems. This urges a formal and quantitative understanding of the explanatory factors in the interpretability of robot learning. In this paper, we aim to study interpretability of compact neural policies through the lens of disentangled representation. We leverage decision trees to obtain factors of variation [1] for disentanglement in robot learning; these encapsulate skills, behaviors, or strategies toward solving tasks. To assess how well networks uncover the underlying task dynamics, we introduce interpretability metrics that measure disentanglement of learned neural dynamics from a concentration of decisions, mutual information and modularity perspective. We showcase the effectiveness of the connection between interpretability and disentanglement consistently across extensive experimental analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源