论文标题
来自微关注的球形邻接和Serre函数
Spherical adjunction and Serre functor from microlocalization
论文作者
论文摘要
对于亚分析的传奇$λ\ subseteq s^{*} m $,我们证明$λ$是可交换或完整的legendrian停止时,无限$m_λ:\ operatatorNorname {sh}_λ(sh}_λ(m)(m)球形cotwist是子类别上的serre函数$ \ operatatorName {sh}_λ^b(m)_0 $,紧凑型茎带完美的茎。这是福卡亚类别之间的CAP函子和Cup函子的结果的捆绑理论(假设较弱)。在证明球形相关性时,我们推断出Sato-Sabloff纤维序列,并为任何REEB流动构建Guillermou倍增函数。
For a subanalytic Legendrian $Λ\subseteq S^{*}M$, we prove that when $Λ$ is either swappable or a full Legendrian stop, the microlocalization at infinity $m_Λ: \operatorname{Sh}_Λ(M) \rightarrow \operatorname{μsh}_Λ(Λ)$ is a spherical functor, and the spherical cotwist is the Serre functor on the subcategory $\operatorname{Sh}_Λ^b(M)_0$ of compactly supported sheaves with perfect stalks. This is a sheaf theory counterpart (with weaker assumptions) of the results on the cap functor and cup functors between Fukaya categories. When proving spherical adjunction, we deduce the Sato-Sabloff fiber sequence and construct the Guillermou doubling functor for any Reeb flow.