论文标题
DIPA:自动驾驶的概率多模式互动预测
DiPA: Probabilistic Multi-Modal Interactive Prediction for Autonomous Driving
论文作者
论文摘要
准确的预测对于在互动场景中操作自动驾驶汽车很重要。预测必须很快,以支持探索一系列可能未来的计划者的多个请求。生成的预测必须准确地表示预测轨迹的概率,同时还捕获了不同的行为模式(例如,左转与在连接处继续持续)。为此,我们提出了DIPA,这是一个交互式预测指标,可满足这些具有挑战性的要求。以前的交互式预测方法使用k模式示例的编码,该示例的代表不足。其他方法优化了最接近模式的评估,其中测试了其中一个预测是否与地面真相相似,但允许进行其他不太可能的预测,这过分代表了不可能的预测。 DIPA通过使用高斯混合模式来编码完整分布,并使用概率和最接近模式的测量方法来解决这些局限性。这些目标分别优化了概率准确性和捕获不同行为的能力,并且之间有一个挑战性的权衡。我们能够使用新颖的培训制度一起解决这两者。 DIPA在交互和NGSIM数据集上实现了新的最新性能,并在使用最接近模式和概率评估时改进基线(MFP)。这证明了在交互式场景上支持计划者的有效预测。
Accurate prediction is important for operating an autonomous vehicle in interactive scenarios. Prediction must be fast, to support multiple requests from a planner exploring a range of possible futures. The generated predictions must accurately represent the probabilities of predicted trajectories, while also capturing different modes of behaviour (such as turning left vs continuing straight at a junction). To this end, we present DiPA, an interactive predictor that addresses these challenging requirements. Previous interactive prediction methods use an encoding of k-mode-samples, which under-represents the full distribution. Other methods optimise closest-mode evaluations, which test whether one of the predictions is similar to the ground-truth, but allow additional unlikely predictions to occur, over-representing unlikely predictions. DiPA addresses these limitations by using a Gaussian-Mixture-Model to encode the full distribution, and optimising predictions using both probabilistic and closest-mode measures. These objectives respectively optimise probabilistic accuracy and the ability to capture distinct behaviours, and there is a challenging trade-off between them. We are able to solve both together using a novel training regime. DiPA achieves new state-of-the-art performance on the INTERACTION and NGSIM datasets, and improves over the baseline (MFP) when both closest-mode and probabilistic evaluations are used. This demonstrates effective prediction for supporting a planner on interactive scenarios.