论文标题

通过Amazon Alexa对生物知识图回答的问题

Question Answering Over Biological Knowledge Graph via Amazon Alexa

论文作者

Karim, Md. Rezaul, Ali, Hussain, Das, Prinon, Abdelwaheb, Mohamed, Decker, Stefan

论文摘要

关于药物,基因,蛋白质,病毒及其机制的结构化和非结构化数据以及事实分布在大量科学文章中。这些文章是一个大规模的知识来源,可以对传播有关某些生物过程机制的知识产生巨大影响。知识图(kg)可以通过集成此类事实和数据来构建,并用于数据集成,探索和联合查询。但是,由于缺乏有关潜在的数据资产或语义技术的知识,探索和查询大规模KGS对于某些用户组很乏味。提问(QA)系统允许使用KG自动回答自然语言问题。最近,由于能够使用户能够表达命令控制智能系统或设备的能力,因此数字助理的使用和适应性变得更广泛。本文是关于在KGS上使用Amazon Alexa的QA启用语音界面。作为概念验证,我们使用了众所周知的Disgenet KG,其中包含涵盖21,671个基因与30,170种疾病,疾病以及临床或异常人类表型之间的113万个基因 - 疾病疾病关联。我们的研究表明,亚历克斯如何从大规模知识库中找到有关某些生物实体的事实。

Structured and unstructured data and facts about drugs, genes, protein, viruses, and their mechanism are spread across a huge number of scientific articles. These articles are a large-scale knowledge source and can have a huge impact on disseminating knowledge about the mechanisms of certain biological processes. A knowledge graph (KG) can be constructed by integrating such facts and data and be used for data integration, exploration, and federated queries. However, exploration and querying large-scale KGs is tedious for certain groups of users due to a lack of knowledge about underlying data assets or semantic technologies. A question-answering (QA) system allows the answer of natural language questions over KGs automatically using triples contained in a KG. Recently, the use and adaption of digital assistants are getting wider owing to their capability at enabling users to voice commands to control smart systems or devices. This paper is about using Amazon Alexa's voice-enabled interface for QA over KGs. As a proof-of-concept, we use the well-known DisgeNET KG, which contains knowledge covering 1.13 million gene-disease associations between 21,671 genes and 30,170 diseases, disorders, and clinical or abnormal human phenotypes. Our study shows how Alex could be of help to find facts about certain biological entities from large-scale knowledge bases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源