论文标题
概率还不够:用于具有认知不确定性的随机动力学模型的形式控制器合成
Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic Dynamical Models with Epistemic Uncertainty
论文作者
论文摘要
在复杂动力系统模型中捕获不确定性对于设计安全控制器至关重要。随机噪声会导致不确定性,而对模型参数的不精确知识会导致认知不确定性。几种方法使用正式的抽象来综合满足与安全性和可及性相关的时间规格的政策。但是,基础模型专门捕获核心,而不是认知不确定性,因此要求该模型参数是精确已知的。我们对克服这种限制的贡献是一种基于抽象的控制器合成方法,用于具有随机噪声和不确定参数的连续状态模型。通过抽样技术和强大的分析,我们在所谓的间隔马尔可夫决策过程(IMDP)的过渡概率间隔(IMDP)中捕获了用户指定置信度的质地和认知不确定性。我们在此IMDP上合成了最佳策略,该策略将(具有指定置信度的置信度)转换为具有相同性能保证的连续模型的反馈控制器。我们的实验基准确认,对认知不确定性的考虑会导致控制器对参数值的变化更为强大。
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers. Stochastic noise causes aleatoric uncertainty, whereas imprecise knowledge of model parameters leads to epistemic uncertainty. Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability. However, the underlying models exclusively capture aleatoric but not epistemic uncertainty, and thus require that model parameters are known precisely. Our contribution to overcoming this restriction is a novel abstraction-based controller synthesis method for continuous-state models with stochastic noise and uncertain parameters. By sampling techniques and robust analysis, we capture both aleatoric and epistemic uncertainty, with a user-specified confidence level, in the transition probability intervals of a so-called interval Markov decision process (iMDP). We synthesize an optimal policy on this iMDP, which translates (with the specified confidence level) to a feedback controller for the continuous model with the same performance guarantees. Our experimental benchmarks confirm that accounting for epistemic uncertainty leads to controllers that are more robust against variations in parameter values.