论文标题
Bora:用于资源分配的贝叶斯优化
BORA: Bayesian Optimization for Resource Allocation
论文作者
论文摘要
最佳资源分配正在获得新的兴趣,因为它是管理,随着时间的推移,云和高性能计算设施的核心问题的相关性。半伴奏反馈(SBF)是有效解决此问题的参考方法。在本文中,我们建议(i)将最佳资源分配的扩展到更一般的问题类别,特别是随着时间的推移资源可用性的变化,以及(ii)贝叶斯优化作为SBF的更有效替代方案。介绍了用于资源分配的贝叶斯优化的三种算法,即波拉,用于代表表示为数值向量或分布的分配决策。将Wasserstein距离视为更合适的指标所需的第二种选择,用于将其用于其中一种BORA算法。结果(i)文献中提出的原始SBF案例研究以及(ii)现实生活中的应用(即,对多渠道营销的优化)在经验上证明BORA是一个比SBF更有效,更有效的学习和实现框架。
Optimal resource allocation is gaining a renewed interest due its relevance as a core problem in managing, over time, cloud and high-performance computing facilities. Semi-Bandit Feedback (SBF) is the reference method for efficiently solving this problem. In this paper we propose (i) an extension of the optimal resource allocation to a more general class of problems, specifically with resources availability changing over time, and (ii) Bayesian Optimization as a more efficient alternative to SBF. Three algorithms for Bayesian Optimization for Resource Allocation, namely BORA, are presented, working on allocation decisions represented as numerical vectors or distributions. The second option required to consider the Wasserstein distance as a more suitable metric to use into one of the BORA algorithms. Results on (i) the original SBF case study proposed in the literature, and (ii) a real-life application (i.e., the optimization of multi-channel marketing) empirically prove that BORA is a more efficient and effective learning-and-optimization framework than SBF.