论文标题

Jurygcn:量化图形卷积网络上的折刀不确定性

JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks

论文作者

Kang, Jian, Zhou, Qinghai, Tong, Hanghang

论文摘要

图形卷积网络(GCN)在许多现实世界应用中表现出很强的经验性表现。 GCN上的绝大多数现有作品主要集中在准确性上,同时忽略了GCN对其预测的自信或不确定。尽管是值得信赖的图挖掘的基石,但GCN上的不确定性量化尚未得到很好的研究,现有的稀缺努力要么无法提供确定性的量化,要么必须通过引入其他参数或架构来更改GCN的培训程序。在本文中,我们提出了第一种基于频繁的方法,名为JuryGCN来量化GCN的不确定性,其中关键思想是将节点的不确定性量化为夹克刀估计器的置信区间的不确定性。此外,我们利用影响功能来估计GCN参数的变化而无需重新训练以扩大计算。提出的JuryGCN能够确定性地量化不确定性,而无需修改GCN体系结构或引入其他参数。在主动学习和半监督节点分类的任务中,我们对现实世界数据集进行了广泛的实验评估,这证明了该方法的疗效。

Graph Convolutional Network (GCN) has exhibited strong empirical performance in many real-world applications. The vast majority of existing works on GCN primarily focus on the accuracy while ignoring how confident or uncertain a GCN is with respect to its predictions. Despite being a cornerstone of trustworthy graph mining, uncertainty quantification on GCN has not been well studied and the scarce existing efforts either fail to provide deterministic quantification or have to change the training procedure of GCN by introducing additional parameters or architectures. In this paper, we propose the first frequentist-based approach named JuryGCN in quantifying the uncertainty of GCN, where the key idea is to quantify the uncertainty of a node as the width of confidence interval by a jackknife estimator. Moreover, we leverage the influence functions to estimate the change in GCN parameters without re-training to scale up the computation. The proposed JuryGCN is capable of quantifying uncertainty deterministically without modifying the GCN architecture or introducing additional parameters. We perform extensive experimental evaluation on real-world datasets in the tasks of both active learning and semi-supervised node classification, which demonstrate the efficacy of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源