论文标题

用于变异的蒙特卡洛模拟的自回归神经jastrow ansatz

Autoregressive neural Slater-Jastrow ansatz for variational Monte Carlo simulation

论文作者

Humeniuk, Stephan, Wan, Yuan, Wang, Lei

论文摘要

从Slater决定因素进行的直接采样与自回归深度神经网络相结合,作为jastrow因子,成为一个完全自动回归的Slater-Jastrow Ansatz,用于变异量子蒙特卡洛,这允许进行无关的采样。消除自相关时间会导致具有可证明的立方缩放的随机算法(具有潜在的大型预成绩),即生产不相关样品的操作数量,并计算出$ \ \ \ \级{O}(O}(o}(n_s^3))$ n_s $ n_s $ n _s的局部能量尺度。该实施是在方格上的二维$ T-V $模型上进行的,以实现为基准。

Direct sampling from a Slater determinant is combined with an autoregressive deep neural network as a Jastrow factor into a fully autoregressive Slater-Jastrow ansatz for variational quantum Monte Carlo, which allows for uncorrelated sampling. The elimination of the autocorrelation time leads to a stochastic algorithm with provable cubic scaling (with a potentially large prefactor), i.e. the number of operations for producing an uncorrelated sample and for calculating the local energy scales like $\mathcal{O}(N_s^3)$ with the number of orbitals $N_s$. The implementation is benchmarked on the two-dimensional $t-V$ model of spinless fermions on the square lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源