论文标题
$ q $ - 票证曲率通过重新归一化的特征形式的概括
Generalizations of the $Q$-prime curvature via renormalized characteristic forms
论文作者
论文摘要
$ q $ - 票曲率是在Case和Yang和Hirachi定义的Cr歧管上不变的本地伪内斯坦。它的积分是总$ q $ - prime曲率,给出了非平凡的全球CR不变性。另一方面,Marugame通过重新归一化的特征形式建造了一个全球CR不变的家族,其中包含$ Q $ $ - 票的曲率。在本文中,我们介绍了每种重新归一化的特征形式的$ q $ prime曲率的概括,并表明其积分与Marugame的CR不变性相吻合。我们还研究了关键的CR GJMS运营商和$ p $ prime运营商的概括,这些操作员与共同变化下的新曲线的转型法有关。
The $Q$-prime curvature is a local pseudo-Einstein invariant on CR manifolds defined by Case and Yang, and Hirachi. Its integral, the total $Q$-prime curvature, gives a non-trivial global CR invariant. On the other hand, Marugame has constructed a family of global CR invariants via renormalized characteristic forms, which contains the total $Q$-prime curvature. In this paper, we introduce a generalization of the $Q$-prime curvature for each renormalized characteristic form, and show that its integral coincides with Marugame's CR invariant. We also study generalizations of the critical CR GJMS operator and the $P$-prime operator, which are related to the transformation laws of our new curvatures under conformal change.