论文标题
曲线曲线的模量及其稳定的共同体学
Moduli of curves on toric varieties and their stable cohomology
论文作者
论文摘要
我们证明,从光滑的投影曲线$ c $ $ g $的固定有限度的模量空间的共同体学到完整的简单曲线变量$ \ mathbb {p}(σ)$,由理性多面体粉丝$σ$ s稳定。作为算术结果,我们获得了Batyrev-Manin的猜想,这些猜想是在除有限的许多特征上,在全球功能领域上,对整体功能领域进行了分辨率。
We prove that the cohomology of the moduli space of morphisms of a fixed finite degree from a smooth projective curve $C$ of genus $g$ to a complete simplicial toric variety $\mathbb{P}(Σ)$, denoted by the rational polyhedral fan $Σ$, stabilizes. As an arithmetic consequence we obtain a resolution of the Batyrev-Manin conjecture for toric varieties over global function fields in all but finitely many characteristics.