论文标题
次曼尼亚人随机步行的大偏差原则
Large deviations principle for sub-Riemannian random walks
论文作者
论文摘要
我们研究了在分层(Carnot)谎言组上随机步行的大偏差。对于这样的群体,有一个自然的向量集合产生其谎言代数,我们仅在这些方向上考虑随机步行。在对增量分布的某些限制下,我们证明了这些随机步行的较大偏差原理,其自然速率函数适合这些空间的亚riemannian几何形状。
We study large deviations for random walks on stratified (Carnot) Lie groups. For such groups, there is a natural collection of vectors which generates their Lie algebra, and we consider random walks with increments in only these directions. Under certain constraints on the distribution of the increments, we prove a large deviation principle for these random walks with a natural rate function adapted to the sub-Riemannian geometry of these spaces.