论文标题
神经形状变形先验
Neural Shape Deformation Priors
论文作者
论文摘要
我们提出了神经形状变形先验,这是一种形状操纵的新方法,可预测用户提供的手柄运动的非刚性对象的网格变形。最先进的方法将此问题作为优化任务施放,其中输入源网格迭代变形以根据手工制作的正规化器(例如ARAP)最小化目标函数。在这项工作中,我们学习了基于形状的基本几何特性的变形行为,同时利用包含一组非刚性变形的大规模数据集。具体而言,给定描述部分表面变形的手柄的源网格和所需的目标位置,我们预测了在3D空间中定义的连续变形场,以描述空间变形。为此,我们引入了基于变压器的变形网络,该变形网络代表形状变形作为局部表面变形的组成。它学习了一组锚定在3D空间中的本地潜在代码,我们可以从中学习一组局部表面的连续变形功能。我们的方法可以应用于具有挑战性的变形,并很好地将其推广到看不见的变形。我们使用变形4D数据集验证了实验中的方法,并与基于经典优化和最新基于神经网络的方法进行了比较。
We present Neural Shape Deformation Priors, a novel method for shape manipulation that predicts mesh deformations of non-rigid objects from user-provided handle movements. State-of-the-art methods cast this problem as an optimization task, where the input source mesh is iteratively deformed to minimize an objective function according to hand-crafted regularizers such as ARAP. In this work, we learn the deformation behavior based on the underlying geometric properties of a shape, while leveraging a large-scale dataset containing a diverse set of non-rigid deformations. Specifically, given a source mesh and desired target locations of handles that describe the partial surface deformation, we predict a continuous deformation field that is defined in 3D space to describe the space deformation. To this end, we introduce transformer-based deformation networks that represent a shape deformation as a composition of local surface deformations. It learns a set of local latent codes anchored in 3D space, from which we can learn a set of continuous deformation functions for local surfaces. Our method can be applied to challenging deformations and generalizes well to unseen deformations. We validate our approach in experiments using the DeformingThing4D dataset, and compare to both classic optimization-based and recent neural network-based methods.