论文标题

径向基础神经网络的几何形状,用于安全性区域的近似值

Geometry of Radial Basis Neural Networks for Safety Biased Approximation of Unsafe Regions

论文作者

Abuaish, Ahmad, Srinivasan, Mohit, Vela, Patricio A.

论文摘要

基于障碍功能的不平等约束是为控制系统执行安全规范的一种手段。当与凸优化程序结合使用时,它们提供了一种计算有效的方法来为一般控制范围系统的总类别的安全性执行安全。采用这种方法时的主要假设之一是对屏障功能本身的先验知识,即安全集的知识。在通过未知环境导航的情况下,本地安全集随时间发展而来,这种知识不存在。该手稿着重于基于安全且不安全的样本测量值(例如,从导航应用中的感知数据中)来表征安全集的零屏障函数的合成。先前的工作制定了一种监督的机器学习算法,其解决方案保证了具有特定级别属性的零屏障函数的构建。但是,它没有探索用于合成过程的神经网络设计的几何形状。本手稿描述了用于零屏障函数合成的神经网络的特定几何形状,并显示了网络如何提供必要的表示形式,以将状态空间拆分为安全且不安全的区域。

Barrier function-based inequality constraints are a means to enforce safety specifications for control systems. When used in conjunction with a convex optimization program, they provide a computationally efficient method to enforce safety for the general class of control-affine systems. One of the main assumptions when taking this approach is the a priori knowledge of the barrier function itself, i.e., knowledge of the safe set. In the context of navigation through unknown environments where the locally safe set evolves with time, such knowledge does not exist. This manuscript focuses on the synthesis of a zeroing barrier function characterizing the safe set based on safe and unsafe sample measurements, e.g., from perception data in navigation applications. Prior work formulated a supervised machine learning algorithm whose solution guaranteed the construction of a zeroing barrier function with specific level-set properties. However, it did not explore the geometry of the neural network design used for the synthesis process. This manuscript describes the specific geometry of the neural network used for zeroing barrier function synthesis, and shows how the network provides the necessary representation for splitting the state space into safe and unsafe regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源