论文标题
在拍卖机制中置换置换率的好处
Benefits of Permutation-Equivariance in Auction Mechanisms
论文作者
论文摘要
设计一种与激励型的拍卖机制,该机制可最大化拍卖师的收入,同时最大程度地减少投标人的前件遗憾是经济学中的一个重要但复杂的问题。通过学习神经网络的最佳拍卖机制,取得了显着的进步。在本文中,我们考虑了流行的添加估值和对称估值设置。即,一组项目的估值定义为集合中所有项目估值的总和,当投标人和/或项目被排列时,估值分布是不变的。我们证明,置换量等神经网络具有很大的优势:排列量相位率降低了预期的前遗憾,改善了模型的推广性,同时保持了预期的收入不变性。这意味着置换量的等值有助于处理理论上最佳的优势策略激励条件,并降低了所需的样品复杂性以进行所需的概括。广泛的实验完全支持我们的理论。据我们所知,这是了解拍卖机制中置换率的好处的第一项工作。
Designing an incentive-compatible auction mechanism that maximizes the auctioneer's revenue while minimizes the bidders' ex-post regret is an important yet intricate problem in economics. Remarkable progress has been achieved through learning the optimal auction mechanism by neural networks. In this paper, we consider the popular additive valuation and symmetric valuation setting; i.e., the valuation for a set of items is defined as the sum of all items' valuations in the set, and the valuation distribution is invariant when the bidders and/or the items are permutated. We prove that permutation-equivariant neural networks have significant advantages: the permutation-equivariance decreases the expected ex-post regret, improves the model generalizability, while maintains the expected revenue invariant. This implies that the permutation-equivariance helps approach the theoretically optimal dominant strategy incentive compatible condition, and reduces the required sample complexity for desired generalization. Extensive experiments fully support our theory. To our best knowledge, this is the first work towards understanding the benefits of permutation-equivariance in auction mechanisms.