论文标题

部分可观测时空混沌系统的无模型预测

A numerical investigation of the mechanics of intracranial aneurysms walls: Assessing the influence of tissue hyperelastic laws and heterogeneous properties on the stress and stretch fields

论文作者

Oliveira, Iago, Cardiff, Philip, Baccin, Carlos E., Gasche, José

论文摘要

在过去的二十年中,数值模拟已被广泛用于颅内动脉瘤(IAS),这是一种传播到大脑的动脉中的危险疾病。在发生破裂的情况下,它们可能会影响世界人口的10%,死亡率高达50%。从物理上讲,IAS内部的血流应建模为流体固定相互作用问题。然而,大多数作品都集中在 - 动脉瘤的血液动力学上,同时通过刚体壁建模完全忽略了壁组织的机械响应,或者对组织力学使用有限的建模假设。解释之一是关于IAS壁的性质的稀缺数据,从而限制了使用更好的建模选项的使用。不幸的是,这种情况仍然是这种情况,因此我们的本研究研究了模拟IA运动的不同建模方法的效果。我们使用了三种高弹性定律和两种不同的方法来对壁厚和组织机械性能进行建模 - 一种假设两者都是均匀的,而另一个则通过使用“血液动力学驱动的”方法来解释壁的异质性,在这种方法中,厚度和材料常数在空间上与心脏循环型型心脏周期型循环相同。使用单向流体 - 固定相互作用溶液策略进行了脉动数值模拟,具有具有IAS的患者特异性血管几何形状,在该策略中,将血流解决并应用为壁运动的驱动力。我们发现,与不同的超弹性定律相比,不同的壁形态模型在机械响应中产生的绝对差异较小。此外,与应力相比,IAS壁的拉伸水平对超弹性和材料常数更敏感。这些发现可用于指导IA模拟的建模决策。

Numerical simulations have been extensively used in the past two decades for the study of intracranial aneurysms (IAs), a dangerous disease that occurs in the arteries that reach the brain. They may affect up to 10 % of the world's population, with up to 50 % mortality rate, in case of rupture. Physically, the blood flow inside IAs should be modeled as a fluid-solid interaction problem. However, the large majority of those works have focused on the hemodynamics of the intra-aneurysmal flow, while ignoring the wall tissue's mechanical response entirely, through rigid-wall modeling, or using limited modeling assumptions for the tissue mechanics. One of the explanations is the scarce data on the properties of IAs walls, thus limiting the use of better modeling options. Unfortunately, this situation is still the case, thus our present study investigates the effect of different modeling approaches to simulate the motion of an IA. We used three hyperelastic laws and two different ways of modeling the wall thickness and tissue mechanical properties -- one assumed that both were uniform while the other accounted for the heterogeneity of the wall by using a "hemodynamics-driven" approach in which both thickness and material constants varied spatially with the cardiac-cycle-averaged hemodynamics. Pulsatile numerical simulations, with patient-specific vascular geometries harboring IAs, were carried out using the one-way fluid-solid interaction solution strategy, in which the blood flow is solved and applied as the driving force of the wall motion. We found that different wall morphology models yield smaller absolute differences in the mechanical response than different hyperelastic laws. Furthermore, the stretch levels of IAs walls were more sensitive to the hyperelastic and material constants than the stress. These findings could be used to guide modeling decisions on IA simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源