论文标题

部分可观测时空混沌系统的无模型预测

Real-time frequency estimation of a qubit without single-shot-readout

论文作者

Zohar, Inbar, Haylock, Ben, Romach, Yoav, Arshad, Muhammad Junaid, Halay, Nir, Drucker, Niv, Stöhr, Rainer, Denisenko, Andrej, Cohen, Yonatan, Bonato, Cristian, Finkler, Amit

论文摘要

量子传感器可以使用量子算法在较大的动态范围内实现敏感性的敏感性极限。自适应相估计算法(PEA)是一个例子,被证明可以通过单发读数(SSR)传感器实现如此高灵敏度。但是,由于测量的对比度低,因此在非SSR传感器上使用自适应PEA并不是微不足道的。在本pea算法中计算测量的平均性质的标准方法是使用基于“多数投票”的方法。尽管它易于实施,但由于测量中的噪声,这种方法更容易出现错误。为了减少这些错误,最近在理论上显示了从批处理选择中选择的二项式分布技术是优越的,因为考虑了平均测量结果的所有结果范围。在这里,我们首次使用二项式分布方法将实时非自适应PEA应用于非SSR传感器。我们将二项式分布方法的均方根误差与在钻石中使用氮化中心作为非SSR传感器在钻石中使用氮化中心的多数投票方法进行了比较。我们的结果表明,二项式分布方法可以通过相同的感应时间实现更好的准确性。为了进一步缩短感应时间,我们提出了一种自适应算法,该算法控制读取阶段,因此是测量基集。我们通过数值模拟显示,添加自适应协议可以进一步提高未来实时实验的准确性。

Quantum sensors can potentially achieve the Heisenberg limit of sensitivity over a large dynamic range using quantum algorithms. The adaptive phase estimation algorithm (PEA) is one example that was proven to achieve such high sensitivities with single-shot readout (SSR) sensors. However, using the adaptive PEA on a non-SSR sensor is not trivial due to the low contrast nature of the measurement. The standard approach to account for the averaged nature of the measurement in this PEA algorithm is to use a method based on `majority voting'. Although it is easy to implement, this method is more prone to mistakes due to noise in the measurement. To reduce these mistakes, a binomial distribution technique from a batch selection was recently shown theoretically to be superior, as all ranges of outcomes from an averaged measurement are considered. Here we apply, for the first time, real-time non-adaptive PEA on a non-SSR sensor with the binomial distribution approach. We compare the mean square error of the binomial distribution method to the majority-voting approach using the nitrogen-vacancy center in diamond at ambient conditions as a non-SSR sensor. Our results suggest that the binomial distribution approach achieves better accuracy with the same sensing times. To further shorten the sensing time, we propose an adaptive algorithm that controls the readout phase and, therefore, the measurement basis set. We show by numerical simulation that adding the adaptive protocol can further improve the accuracy in a future real-time experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源