论文标题
对经典海森堡铁磁铁的亚稳定性的障碍影响
Disorder effects on the metastability of classical Heisenberg ferromagnets
论文作者
论文摘要
在目前的工作中,我们通过蒙特卡洛模拟在三个维度上研究了疾病对经典各向异性海森贝格·铁磁体的逆转时间($τ$)的影响。从纯系统开始,我们的分析表明,$τ$随着各向异性强度的增加而增加。另一方面,对于从各种统计分布产生的随机分布的各向异性的情况下,获得了一组结果:(i)对于双峰和统一分布,$τ$的变化均与各向异性的强度强烈取决于温度。 (ii)在较低的温度下,随着分布宽度的增加,$τ$的下降更为突出。 (iii)对于正态分布各向异性的情况,$τ$的变化具有分布宽度的宽度,是非单调的,其最低值的最小值随温度呈指数衰减。最后,我们详细阐述了纵向($ h_z $)和横向($ h_x $)字段的联合效果,这些字段似乎遵守了$τh_z^{n} \ sim f(h_x)$的表单的缩放行为。
In the present work, we investigate the effects of disorder on the reversal time ($τ$) of classical anisotropic Heisenberg ferromagnets in three dimensions by means of Monte Carlo simulations. Starting from the pure system, our analysis suggests that $τ$ increases with increasing anisotropy strength. On the other hand, for the case of randomly distributed anisotropy, generated from various statistical distributions, a set of results is obtained: (i) For both bimodal and uniform distributions the variation of $τ$ with the strength of anisotropy strongly depends on temperature. (ii) At lower temperatures, the decrement in $τ$ with increasing width of the distribution is more prominent. (iii) For the case of normally distributed anisotropy, the variation of $τ$ with the width of the distribution is non-monotonic, featuring a minimum value that decays exponentially with the temperature. Finally, we elaborate on the joint effect of longitudinal ($h_z$) and transverse ($h_x$) fields on $τ$, which appear to obey a scaling behavior of the form $τh_z^{n} \sim f(h_x)$.