论文标题

对贝叶斯和广义基金推断的几何观点

A Geometric Perspective on Bayesian and Generalized Fiducial Inference

论文作者

Liu, Yang, Hannig, Jan, Murph, Alexander C

论文摘要

DATA后统计推断涉及在观察到的数据以条件为条件的模型参数的概率语句。当有有关参数的先验知识时,DATA推理可以方便地从贝叶斯后期进行。在没有先验信息的情况下,我们仍然可能依靠客观贝叶斯或普遍的基准推断(GFI)。受近似贝叶斯计算的启发,我们提出了借助差异几何形状的新颖表征DATA推断。在适当的平滑性条件下,我们确定贝叶斯后期和广义基准分布(GFD)可以分别以相同的可区分歧管支持的绝对连续分布来表征:该歧管是由观察到的数据和拟合模型的数据生成方程式唯一确定的。我们的几何分析不仅阐明了贝叶斯推理和GFI之间的连接和区别,而且还允许我们使用歧管马尔可夫链蒙特卡洛算法从后代和GFD中取样。提出了对方差示例的重复测量分析,以说明采样过程。

Post-data statistical inference concerns making probability statements about model parameters conditional on observed data. When a priori knowledge about parameters is available, post-data inference can be conveniently made from Bayesian posteriors. In the absence of prior information, we may still rely on objective Bayes or generalized fiducial inference (GFI). Inspired by approximate Bayesian computation, we propose a novel characterization of post-data inference with the aid of differential geometry. Under suitable smoothness conditions, we establish that Bayesian posteriors and generalized fiducial distributions (GFDs) can be respectively characterized by absolutely continuous distributions supported on the same differentiable manifold: The manifold is uniquely determined by the observed data and the data generating equation of the fitted model. Our geometric analysis not only sheds light on the connection and distinction between Bayesian inference and GFI, but also allows us to sample from posteriors and GFDs using manifold Markov chain Monte Carlo algorithms. A repeated-measures analysis of variance example is presented to illustrate the sampling procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源