论文标题
部分可观测时空混沌系统的无模型预测
MiDe22: An Annotated Multi-Event Tweet Dataset for Misinformation Detection
论文作者
论文摘要
通过在线社交网络对错误信息的迅速传播构成了一个紧迫的问题,危害人类健康,公共安全,民主和经济的有害后果;因此,需要紧急行动来解决此问题。在这项研究中,我们构建了一个名为Mide22的新的人类注射数据集,其中有5,284个英语和5,064个土耳其推文,并在2020年至2022年之间的几起事件中使用了错误信息标签,其中包括俄罗斯 - 乌克兰战争,19020年,俄罗斯 - 乌克兰战争,19020年,乌克兰战争。该数据集包括与Tweet的用户参与,以喜欢,答复,转发和报价。我们还提供了具有描述性统计数据的详细数据分析,以及对错误信息检测的基准评估的实验结果。
The rapid dissemination of misinformation through online social networks poses a pressing issue with harmful consequences jeopardizing human health, public safety, democracy, and the economy; therefore, urgent action is required to address this problem. In this study, we construct a new human-annotated dataset, called MiDe22, having 5,284 English and 5,064 Turkish tweets with their misinformation labels for several recent events between 2020 and 2022, including the Russia-Ukraine war, COVID-19 pandemic, and Refugees. The dataset includes user engagements with the tweets in terms of likes, replies, retweets, and quotes. We also provide a detailed data analysis with descriptive statistics and the experimental results of a benchmark evaluation for misinformation detection.