论文标题
部分可观测时空混沌系统的无模型预测
Uncertainty-Aware Unsupervised Image Deblurring with Deep Residual Prior
论文作者
论文摘要
在精确的模糊内核假设下,非蓝色脱毛方法实现了不错的性能。由于在实践中不可避免的是内核不确定性(即内核误差),因此建议通过引入核(或诱导)误差的先验来处理半盲脱蓝色。但是,如何设计适合内核(或诱导)错误的先验仍然具有挑战性。手工制作的先验,结合了域知识,通常表现良好,但是当内核(或诱导)误差复杂时,性能差。数据驱动的先验过度取决于培训数据的多样性和丰富性,因此很容易受到分布的模糊和图像的影响。为了应对这一挑战,我们建议通过定制未经训练的深神经网络表示内核引起的错误(称为残余)的无数据集深残差,这使我们能够在实际场景中灵活地适应不同的模糊和图像。通过有机地集成了深度先验和手工制作的先验的各自的优势,我们提出了一个无监督的半盲模型,该模型从模糊的图像和不准确的模糊内核中恢复了潜在图像。为了应对公式模型,开发了有效的交替最小化算法。与数据驱动和模型驱动的方法相比,在图像质量和内核误差的鲁棒性方面,广泛的实验证明了所提出的方法的良好性能。
Non-blind deblurring methods achieve decent performance under the accurate blur kernel assumption. Since the kernel uncertainty (i.e. kernel error) is inevitable in practice, semi-blind deblurring is suggested to handle it by introducing the prior of the kernel (or induced) error. However, how to design a suitable prior for the kernel (or induced) error remains challenging. Hand-crafted prior, incorporating domain knowledge, generally performs well but may lead to poor performance when kernel (or induced) error is complex. Data-driven prior, which excessively depends on the diversity and abundance of training data, is vulnerable to out-of-distribution blurs and images. To address this challenge, we suggest a dataset-free deep residual prior for the kernel induced error (termed as residual) expressed by a customized untrained deep neural network, which allows us to flexibly adapt to different blurs and images in real scenarios. By organically integrating the respective strengths of deep priors and hand-crafted priors, we propose an unsupervised semi-blind deblurring model which recovers the latent image from the blurry image and inaccurate blur kernel. To tackle the formulated model, an efficient alternating minimization algorithm is developed. Extensive experiments demonstrate the favorable performance of the proposed method as compared to data-driven and model-driven methods in terms of image quality and the robustness to the kernel error.