论文标题
部分可观测时空混沌系统的无模型预测
A new perspective on Digital Twins: Imparting intelligence and agency to entities
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Despite the Digital Twin (DT) concept being in the industry for a long time, it remains ambiguous, unable to differentiate itself from information models, general computing, and simulation technologies. Part of this confusion stems from previous studies overlooking the DT's bidirectional nature, that enables the shift of agency (delegating control) from humans to physical elements, something that was not possible with earlier technologies. Thus, we present DTs in a new light by viewing them as a means of imparting intelligence and agency to entities, emphasizing that DTs are not just expert-centric tools but are active systems that extend the capabilities of the entities being twinned. This new perspective on DTs can help reduce confusion and humanize the concept by starting discussions about how intelligent a DT should be, and its roles and responsibilities, as well as setting a long-term direction for DTs.