论文标题
解锁连续体中光子结合状态的平面外尺寸以实现最大的光学手性
Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality
论文作者
论文摘要
实现具有真正手性质的无损跨度的实现需要制造三维结构,从而限制了它们的实验可行性和阻碍实际实现的可行性。即使先前已经证明了金属纳米结构的三维组装,但产生的等离子共振会遭受高内在和辐射损失的影响。连续体(BICS)中光子结合状态的概念对定制各种几何形状的辐射损失具有重要作用,尤其是在使用无损耗介电的实施时,但到目前为止,应用程序仅限于平面和本质上是正义的,具有本质上的成本结构。在这里,我们介绍了一种新型的纳米化方法,以解锁通常平坦的全dielectric metasurfaces的高度,作为可访问的参数,以进行有效的共振和功能控制。特别是,我们意识到了准BIC跨膜中的平面外对称性破坏,并利用这种设计的自由度,首次证明具有最大的内在性质的光学全dielectric Quasi-bic metasurality,具有最大的内在性质性质,可在结构手工上选择特定的圆形极化。我们的实验结果不仅为全电型BIC和手性纳米素化学打开了新的范式,而且还有望在实现有效产生光学角动量,全息偏移和平等对称性对称性光学系统方面取得进步。
The realization of lossless metasurfaces with true chirality crucially requires the fabrication of three-dimensional structures, constraining their feasibility for experiments and hampering practical implementations. Even though the three-dimensional assembly of metallic nanostructures has been demonstrated previously, the resulting plasmonic resonances suffer from high intrinsic and radiative losses. The concept of photonic bound states in the continuum (BICs) is instrumental for tailoring radiative losses in diverse geometries, especially when implemented using lossless dielectrics, but applications have so far been limited to planar and intrinsically achiral structures. Here, we introduce a novel nanofabrication approach to unlock the height of generally flat all-dielectric metasurfaces as an accessible parameter for efficient resonance and functionality control. In particular, we realize out-of-plane symmetry breaking in quasi-BIC metasurfaces and leverage this design degree of freedom to demonstrate, for the first time, an optical all-dielectric quasi-BIC metasurface with maximum intrinsic chirality that responds selectively to light of a particular circular polarization depending on the structural handedness. Our experimental results not only open a new paradigm for all-dielectric BICs and chiral nanophotonics but also promise advances in the realization of efficient generation of optical angular momentum, holographic metasurfaces, and parity-time symmetry-broken optical systems.