论文标题

部分可观测时空混沌系统的无模型预测

Online Ramsey numbers of ordered paths and cycles

论文作者

Clemen, Felix Christian, Heath, Emily, Lavrov, Mikhail

论文摘要

有序图是其顶点上有线性排序的图。在线Ramsey游戏订购的图形$ G $和$ H $是在无限序列上播放的;在每个回合中,建筑商都在两个顶点之间绘制一个边缘,而画家则将其颜色为红色或蓝色。建筑商试图尽快创建红色$ g $或蓝色$ h $,而画家则希望相反。在线订购的Ramsey编号$ r_o(g,h)$是游戏持续的转弯数。 在本文中,我们考虑了$ r_o(g,p_n)$的行为,$ g $,其中$ p_n $是单调订购路径。我们证明了$ o(n \ log_2n)$在$ r_o(g,p_n)$上绑定了所有$ g $,而当$ g $为$ 3 $ 3 $ -ICHROACT时,$ o(n)$绑定了;我们将$ r_o(g,p_n)= n + o(1)$进行部分分类$ g $。其中许多结果扩展到$ r_o(g,c_n)$,其中$ c_n $是通过添加一个边缘从$ p_n $获得的有序周期。

An ordered graph is a graph with a linear ordering on its vertices. The online Ramsey game for ordered graphs $G$ and $H$ is played on an infinite sequence of vertices; on each turn, Builder draws an edge between two vertices, and Painter colors it red or blue. Builder tries to create a red $G$ or a blue $H$ as quickly as possible, while Painter wants the opposite. The online ordered Ramsey number $r_o(G,H)$ is the number of turns the game lasts with optimal play. In this paper, we consider the behavior of $r_o(G,P_n)$ for fixed $G$, where $P_n$ is the monotone ordered path. We prove an $O(n \log_2n)$ bound on $r_o(G,P_n)$ for all $G$ and an $O(n)$ bound when $G$ is $3$-ichromatic; we partially classify graphs $G$ with $r_o(G,P_n) = n + O(1)$. Many of these results extend to $r_o(G,C_n)$, where $C_n$ is an ordered cycle obtained from $P_n$ by adding one edge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源