论文标题
DIGAT:与双电影互动建模新闻建议
DIGAT: Modeling News Recommendation with Dual-Graph Interaction
论文作者
论文摘要
新闻推荐(NR)对于在线新闻服务至关重要。现有的NR方法通常采用新闻用户表示学习框架,面临两个潜在的局限性。首先,在新闻编码器中,单一候选新闻编码的语义信息问题不足。其次,现有的基于图的NR方法是有希望的,但缺乏有效的新闻用户功能交互,从而使基于图的建议次优。为了克服这些局限性,我们建议由新闻和用户图渠道组成的双重相互作用图形网络(DIGAT)。在News-Graph频道中,我们通过将语义相关的新闻信息与语义增强图(SAG)结合在一起,丰富了单一候选新闻的语义。在用户图频道中,多级用户兴趣用新闻主题表示。最值得注意的是,我们设计了一个双圈相互作用过程,以在新闻和用户图之间执行有效的功能交互,从而促进了准确的新闻用户表示形式匹配。基准数据集思维的实验结果表明,Digat优于现有的新闻推荐方法。进一步的消融研究和分析验证了(1)语义增强的新闻图建模和(2)双电影相互作用的有效性。
News recommendation (NR) is essential for online news services. Existing NR methods typically adopt a news-user representation learning framework, facing two potential limitations. First, in news encoder, single candidate news encoding suffers from an insufficient semantic information problem. Second, existing graph-based NR methods are promising but lack effective news-user feature interaction, rendering the graph-based recommendation suboptimal. To overcome these limitations, we propose dual-interactive graph attention networks (DIGAT) consisting of news- and user-graph channels. In the news-graph channel, we enrich the semantics of single candidate news by incorporating the semantically relevant news information with a semantic-augmented graph (SAG). In the user-graph channel, multi-level user interests are represented with a news-topic graph. Most notably, we design a dual-graph interaction process to perform effective feature interaction between the news and user graphs, which facilitates accurate news-user representation matching. Experiment results on the benchmark dataset MIND show that DIGAT outperforms existing news recommendation methods. Further ablation studies and analyses validate the effectiveness of (1) semantic-augmented news graph modeling and (2) dual-graph interaction.