论文标题
DA-VSR:域适应医学图像的体积超分辨率
DA-VSR: Domain Adaptable Volumetric Super-Resolution For Medical Images
论文作者
论文摘要
医疗图像超分辨率(SR)是一个活跃的研究领域,具有许多潜在的应用,包括减少扫描时间,改善视觉理解,增加下游任务的鲁棒性,等等。但是,将基于深入的SR应用程序应用于临床应用程序通常会遇到域问题,从而遇到域问题,因为测试数据可能会被不同的机器或不同的机器人或不同的Organs获取。在这项工作中,我们提出了一种称为域适应性体积超分辨率(DA-VSR)的新型算法,以更好地弥合域不一致差距。 DA-VSR使用统一的特征提取主链和一系列网络头来提高不同飞机上的图像质量。此外,DA-VSR利用了测试数据上的平面内和平面分辨率差异,以实现自学域的适应性。因此,DA-VSR结合了通过监督培训学到的强大功能生成器的优势,以及通过无监督学习来调整测试量的特质的能力。通过实验,我们证明了DA-VSR可以显着提高不同域的众多数据集的超分辨率质量,从而进一步迈向实际临床应用。
Medical image super-resolution (SR) is an active research area that has many potential applications, including reducing scan time, bettering visual understanding, increasing robustness in downstream tasks, etc. However, applying deep-learning-based SR approaches for clinical applications often encounters issues of domain inconsistency, as the test data may be acquired by different machines or on different organs. In this work, we present a novel algorithm called domain adaptable volumetric super-resolution (DA-VSR) to better bridge the domain inconsistency gap. DA-VSR uses a unified feature extraction backbone and a series of network heads to improve image quality over different planes. Furthermore, DA-VSR leverages the in-plane and through-plane resolution differences on the test data to achieve a self-learned domain adaptation. As such, DA-VSR combines the advantages of a strong feature generator learned through supervised training and the ability to tune to the idiosyncrasies of the test volumes through unsupervised learning. Through experiments, we demonstrate that DA-VSR significantly improves super-resolution quality across numerous datasets of different domains, thereby taking a further step toward real clinical applications.