论文标题

极地金属分类法分类和发现

Polar Metals Taxonomy for Materials Classification and Discovery

论文作者

Hickox-Young, Daniel, Puggioni, Danilo, Rondinelli, James M.

论文摘要

在过去的十年中,将破裂的反转对称性与金属电导率结合在一起的材料已从思想实验转变为增长最快的研究主题之一。 2013年,观察金属中第一个无可争议的极性转变lioso $ _3 $,启发了关于该主题的理论和实验性工作的激增,发现了许多材料,这些材料结合了以前被认为是禁忌的属性[nat。母校。 \ textbf {12},1024(2013)]。就像在一个新生的领域一样,兴趣的突然上升伴随着多样化(有时是矛盾的)术语。尽管``类似铁电的金属在理论上是明确定义的,即,在表现出金属电子传输的同时,可以通过降低对称性的过渡到极性阶段的材料,但实际材料可以找到多种方法来突破这种定义的界限。在这里,我们可以审查和探索从理论的构造和实验的范围,并探讨了启动的层次,并实验了理论,并实验了,并实验了型号,并实验了,并实验了型号,并启用了该定义的范围,并可以探索型号,并实验了,并实验了,并实验了型号,并允许造型,并启动了这些定义的范围,并允许在此定义,并允许造型和实验。一个描述,识别和分类的极性金属;我们还使用它来讨论``铁电机''和``金属''中固有的一些基本张力。我们包括对已知材料的调查,该材料将极性对称性与金属电导率相结合,并根据用于协调这两个阶及其所得特性的机制进行分类。我们结论是通过利用我们的分类法来描述发现新型极地金属的机会。

Over the past decade, materials that combine broken inversion symmetry with metallic conductivity have gone from a thought experiment to one of the fastest growing research topics. In 2013, the observation of the first uncontested polar transition in a metal, LiOsO$_3$, inspired a surge of theoretical and experimental work on the subject, uncovering a host of materials which combine properties previously thought to be contraindicated [Nat. Mater. \textbf{12}, 1024 (2013)]. As is often the case in a nascent field, the sudden rise in interest has been accompanied by diverse (and sometimes conflicting) terminology. Although ``ferroelectric-like" metals are well-defined in theory, i.e., materials that undergo a symmetry-lowering transition to a polar phase while exhibiting metallic electron transport, real materials find a myriad of ways to push the boundaries of this definition. Here, we review and explore the burgeoning polar metal frontier from the perspectives of theory, simulation, and experiment while introducing a unified taxonomy. The framework allows one to describe, identify, and classify polar metals; we also use it to discuss some of the fundamental tensions between theory and models of reality inherent in the terms ``ferroelectric" and ``metals.'' In addition, we highlight shortcomings of electrostatic doping simulations in modeling different subclasses of polar metals, noting how the assumptions of this approach depart from experiment. We include a survey of known materials that combine polar symmetry with metallic conductivity, classified according to the mechanisms used to harmonize those two orders and their resulting properties. We conclude by describing opportunities for the discovery of novel polar metals by utilizing our taxonomy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源