论文标题

部分可观测时空混沌系统的无模型预测

Unveiling Hidden DNN Defects with Decision-Based Metamorphic Testing

论文作者

Yuan, Yuanyuan, Pang, Qi, Wang, Shuai

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Contemporary DNN testing works are frequently conducted using metamorphic testing (MT). In general, de facto MT frameworks mutate DNN input images using semantics-preserving mutations and determine if DNNs can yield consistent predictions. Nevertheless, we find that DNNs may rely on erroneous decisions (certain components on the DNN inputs) to make predictions, which may still retain the outputs by chance. Such DNN defects would be neglected by existing MT frameworks. Erroneous decisions, however, would likely result in successive mis-predictions over diverse images that may exist in real-life scenarios. This research aims to unveil the pervasiveness of hidden DNN defects caused by incorrect DNN decisions (but retaining consistent DNN predictions). To do so, we tailor and optimize modern eXplainable AI (XAI) techniques to identify visual concepts that represent regions in an input image upon which the DNN makes predictions. Then, we extend existing MT-based DNN testing frameworks to check the consistency of DNN decisions made over a test input and its mutated inputs. Our evaluation shows that existing MT frameworks are oblivious to a considerable number of DNN defects caused by erroneous decisions. We conduct human evaluations to justify the validity of our findings and to elucidate their characteristics. Through the lens of DNN decision-based metamorphic relations, we re-examine the effectiveness of metamorphic transformations proposed by existing MT frameworks. We summarize lessons from this study, which can provide insights and guidelines for future DNN testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源