论文标题
MPSAUTH:移动Web应用程序的隐私权和可扩展身份验证
mPSAuth: Privacy-Preserving and Scalable Authentication for Mobile Web Applications
论文作者
论文摘要
如今,大多数Web应用程序请求源自移动设备,因此在安全考虑方面,移动用户的身份验证至关重要。为此,最近的方法依靠机器学习技术来分析用户行为的各个方面,作为认证决策的基础。这些方法面临两个挑战:首先,检查行为数据引起了严重的隐私问题,其次,必须扩展使用大量用户。现有方法不能充分解决这些挑战。我们提出了MPSAuth,这是一种不断跟踪反映用户行为的各种数据源的方法(例如,触摸屏交互,传感器数据),并估算了基于机器学习技术合法的当前用户合法的可能性。使用MPSAuth,身份验证协议和机器学习模型都可以在同型加密数据上运行,以确保用户的隐私。此外,MPSAuth使用的机器学习模型数量独立于用户数量,从而提供了足够的可扩展性。在基于移动应用程序的现实世界数据的广泛评估中,我们说明MPSAuth可以在低加密和通信开销的情况下提供高精度,而推断的努力则可以在一定程度上增加。
As nowadays most web application requests originate from mobile devices, authentication of mobile users is essential in terms of security considerations. To this end, recent approaches rely on machine learning techniques to analyze various aspects of user behavior as a basis for authentication decisions. These approaches face two challenges: first, examining behavioral data raises significant privacy concerns, and second, approaches must scale to support a large number of users. Existing approaches do not address these challenges sufficiently. We propose mPSAuth, an approach for continuously tracking various data sources reflecting user behavior (e.g., touchscreen interactions, sensor data) and estimating the likelihood of the current user being legitimate based on machine learning techniques. With mPSAuth, both the authentication protocol and the machine learning models operate on homomorphically encrypted data to ensure the users' privacy. Furthermore, the number of machine learning models used by mPSAuth is independent of the number of users, thus providing adequate scalability. In an extensive evaluation based on real-world data from a mobile application, we illustrate that mPSAuth can provide high accuracy with low encryption and communication overhead, while the effort for the inference is increased to a tolerable extent.