论文标题

预期的多停车表示偏爱彩票的偏好

Expected multi-utility representations of preferences over lotteries

论文作者

Leonetti, Paolo

论文摘要

让$ \ succsim $是一组简单彩票的二进制关系,而可计数的结果集$ z $。我们在$ \ succsim $上提供必要和足够的条件,以确保存在$ u $ u $ u $ u $ u $ u $ u $ u $ u u $ u:z \ to \ mathbf {r} $,以便$ p \ ucs q \ uccsim q \,\,\,\,\,\,\,\,\ long long long long frightrightArlow \ _ \ Mathbf {e} _q [u] \,\ text {对于所有简单彩票$ p,q $ in u $$ in u $$ in u $$。在这种情况下,集合$ u $本质上是唯一的。然后,我们表明,如果$ z $无法数量,模拟表征将无法保持。这为Dubra,Maccheroni和OK在[J.经济。理论〜\ textbf {115}(2004),no。〜1,118--133]。最后,我们表明,$ \ succsim $上的不同连续性要求允许对设定的实用程序功能的可能选择(例如,所有公用事业功能均具有限制)的某些限制,提供了广泛的预期多功能表示。

Let $\succsim$ be a binary relation on the set of simple lotteries over a countable outcome set $Z$. We provide necessary and sufficient conditions on $\succsim$ to guarantee the existence of a set $U$ of von Neumann--Morgenstern utility functions $u: Z\to \mathbf{R}$ such that $$ p\succsim q \,\,\,\Longleftrightarrow\,\,\, \mathbf{E}_p[u] \ge \mathbf{E}_q[u] \,\text{ for all }u \in U $$ for all simple lotteries $p,q$. In such case, the set $U$ is essentially unique. Then, we show that the analogue characterization does not hold if $Z$ is uncountable. This provides an answer to an open question posed by Dubra, Maccheroni, and Ok in [J. Econom. Theory~\textbf{115} (2004), no.~1, 118--133]. Lastly, we show that different continuity requirements on $\succsim$ allow for certain restrictions on the possible choices of the set $U$ of utility functions (e.g., all utility functions are bounded), providing a wide family of expected multi-utility representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源