论文标题
$ p $ - 集成的teichmüller空间$ p \ geqslant 1 $
The $p$-integrable Teichmüller space for $p \geqslant 1$
论文作者
论文摘要
我们验证了$ p $ - 集成的teichmüllerspace $ t_p $允许任何$ p \ geq 1 $的规范复杂的Banach歧管结构。此外,我们表征了$ p $ -Besov空间的元素同构,该元素对应于$ t_p $的元素,以$ p $ -besov空间> 1 $。
We verify that the $p$-integrable Teichmüller space $T_p$ admits the canonical complex Banach manifold structure for any $p \geq 1$. Moreover, we characterize a quasisymmetric homeomorphism corresponding to an element of $T_p$ in terms of the $p$-Besov space for any $p>1$.