论文标题

量子层析成像通过非凸Riemannian梯度下降

Quantum state tomography via non-convex Riemannian gradient descent

论文作者

Hsu, Ming-Chien, Kuo, En-Jui, Yu, Wei-Hsuan, Cai, Jian-Feng, Hsieh, Min-Hsiu

论文摘要

大尺寸的未知密度矩阵的恢复需要大量的计算资源。最近考虑的梯度下降(FGD)算法及其变体实现了最新的性能,因为它们可以通过利用密度矩阵的某些基础结构来减轻尺寸障碍。尽管理论上保证了线性收敛速率,但实际情况下的收敛仍然很慢,因为FGD算法的收缩因子取决于地面真相状态的条件数$κ$。因此,迭代的总数可以大至$ o(\sqrtκ\ ln(\ frac {1} {\ varepsilon}))$,以达到估计错误$ \ varepsilon $。在这项工作中,我们得出了一种量子状态断层扫描方案,该方案改善了对对数尺度的$κ$的依赖。也就是说,我们的算法可以在$ o(\ ln(\ frac {1} {κ\ varepsilon})中实现近似错误$ \ varepsilon $。改进来自非凸Riemannian梯度下降(RGD)的应用。因此,我们的方法中的缩合因素是独立于给定状态的通用常数。我们的理论结果非常快速地收敛和几乎最佳的误差界限通过数值结果证实。

The recovery of an unknown density matrix of large size requires huge computational resources. The recent Factored Gradient Descent (FGD) algorithm and its variants achieved state-of-the-art performance since they could mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite their theoretical guarantee of a linear convergence rate, the convergence in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the condition number $κ$ of the ground truth state. Consequently, the total number of iterations can be as large as $O(\sqrtκ\ln(\frac{1}{\varepsilon}))$ to achieve the estimation error $\varepsilon$. In this work, we derive a quantum state tomography scheme that improves the dependence on $κ$ to the logarithmic scale; namely, our algorithm could achieve the approximation error $\varepsilon$ in $O(\ln(\frac{1}{κ\varepsilon}))$ steps. The improvement comes from the application of the non-convex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by numerical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源